
HIGH SPCFCSOEARRFTTR

HIGH SPECIFIC PO.ER IRCRAFC TURN

*l.J

X THESIS

:N

LmJ MAR 28 1989.

DEPARTMENT OF THE AIR FORCE SN
AIR UNIVERSITY (ATC -

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

8.5 03 13 085



A! PT/GAR/AA/78D- 5

*JI

IGTA&I

HIGH SPECIFIC POWER AIRCRAFT TURN D1IC TA1
MANEUVERS: TRADEOFF OF TIME-TO-TURN UUatjonnd

VERSUS CHANGE IN SPECIFIC ENERGY Justi.lcatlo

THES IS

AFIT/GAE/AA/78D-5 STEVEN B. DRON Ionibut/~7-'-".
CAPT USAF A aII od-

S peclal

Approved for public releasel distribution unlimit,

MAR 28 19J

** '' * * *S



API T/GAE/AA/78D-5

HIGH SPECIFIC POWER AIRCRAFT TURN
MANEUVERS: TRADEOFF OF TIME-TO-TURN

VERSUS CHANGE IN SPECIFIC ENERGY

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air Training Command
in Partial Fulfillment of the

Requirements for the Degree of
Master of Science

by

Steven B. Dron, B.S.
Capt USAF

Graduate Aerospace Engineering
September 1984

Approved for public release; distribution unlimited

-.



S... • , -,••,r • ., 1,..,. , •, . . . ,- •i. - i'r- .- n-.-'•,w ..•, " , r • ,v-• . .,u ,'wrx, t wi n.•

AFIT/GAE/AA/78D-5

"Preface

This work is the result of my attempt during course
work at and after separation from AlIT to define a
tradeoff between time-to-turn and final specific energy
for an aircraft with high specific power. I am indebted
to Capt James Rader, my thesis advisor for getting me
started, to Mr. Elisha Rachovitsky and Mr. Gerald M.
Anderson for their encouragement and advice and to my
family and friends for their continued moral support.
Special thanks are in order for my wife, Lucy, who has
admirably withstood these past seven years, and to the
Trinity, for the Light in this age of Darkness. Amen

Steven B. Dron
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.• A~bstract

"The report deals with a tradeoff betveen time-to-turn

and the change In specific energy during a turn of 1800,

for an aircraft of high specific power. This type of

aircraft possesses the capability to sustain flight at

the corner velocity where the aircraft flies at maximum

lift coefficient and maximum load factor simultaneously.

However, the classical necessary conditions breakdown on

this corner velocity arc and an addition constraint set

must be defined to determine the optimal control

histories. The report first defines the necessary

conditions for a genetic optimal control formulation with

two state-dependent inequality constraints and then

applies the formulation to a high specific power aircraft

problem. The result is a three-point boundary value

problem including a discontinuous interior corner time at

the beginning of sustained corner velocity flight. All

state and costate derivatives and end conditions are

~~,' presented with numerical methods for determining minimum

time, maximum energy and maximum energy gradient

solutions. Anticipated results are provided for the

formulations beginning at initial conditions both above

and below the corner velocity. Results are presented for

the minimum time solution only. Reconmendations for

further work in this same area are also provided.

* Vi
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HIGH SPECIFIC POWER AIRCRAFT TURN
"MANEUVERS: TRADEOFF OF TIME-TO-TURN

VERSUS CHANGE IN SPECIFIC ENERGY

I. INTRODUCTION

3 Since World War I, great strides have been made in

the field of energy management of combat aircraft. Most

of the presently used tactics were developed during the

early portion of this century, but their detailed

explanation and simulation has only been accomplished in

the past 25 years. As more progress is made in aircraft

design and capabilities, new avenues of research in

energy management are opened for examination.

Much work has been done in the areas of fuel and

energy management for fighter aircraft of the 1960's thru

1970's vintage, particularly the area of minimum time-to-

turn. In research of any particular aircraft's minimum-

time turn performance, a solution is sought whereby the

angle of attack, bank angle and throttle histories create

"an exchange of potential and kinetic energy to produce

the highest turn rate possible at all points in time.

"For every aircraft, there is a velocity which is a

function of altitude, at which the maximum possible turn

* rate occurs. It is that airspeed at which maximum lift

coefficient and maximum load factor occur simulataneously

and it is known as the corner velocity. Beginning at a

particular initial airspeed and altitude, flying as close

as possible to this velocity at all times gives the

minimum time turn for that aircraft.

"4
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Historically, aircraft have possessed excessive

"weight and induced drag and insufficient thrust to

sustain flight at their corner velocities although they

can instantaneously pass through this condition during a

maximum performance maneuver. However, as technology

advances, lighter, more aerodynamically efficient

aircraft with increased thrust are developed which can

more closely approximate sustained corner velocity

flight.

In the near future, fighter aircraft may produce more

than the minimum required specific power to sustain

corner velocity flight and will be able to achieve the

maximum possible turning rate at less than maximum

throttle setting. Should this capability exist for a

particular aircraft, it would be of interest to examine

the tradeoff between time allotted to complete a 1800

velocity vector heading change and the resultant specific

energy change at the end of the turn, for turns that

begin both below and above the corner velocity. The

examination of this tradeoff and the set of optimal

"control histories which produce it is the objective of

this thesis.

This work is an extension of the work done by

Humpitreys (Ref 5) and Anderson (Ref 1). In this effort,

the aircraft model of Humphreys and the kinematic optimal

control equations developed by Anderson are blended with4
desired initial and final flight conditions to form a

2
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pair of Three Point Boundary Value Problems (TPBVP)I one

for minimum time (free final time) and one for maximum

energy gain (fixed final time). From these formulations,

the tradeoff is determined.

J'
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I1. Statement of the Problem

Connection of Energy and Time in a Turn

As stated in the introduction, the objective of this

thesis is to examine the tradeoff between time to

complete a 1800 velocity vector heading change and the

"resultant specific energy change from the beginning of

Ile the turn to the end. Therefore, the tradeoff criterion

between energy and time must be defined.

The total energy of an aircraft is the sum of its

potential and kinetic energy components and can be stated

as:

ET - mgh + hmV2  (2-1)

which has units of foot-pounds. The specific energy, or

the energy altitude of an aircraft is the total energy

per pound of aircraft weight and can be expressed as:

E - h + (2 12-2)
2g

which has units of feet. If an aircraft begins a turn

with some initial specific energy, Ei, the effects of

climbing and diving, drag and thrust application will

transition the initial aircraft energy state to a final

* energy state, Ef, in a time, tf.

For a minimum time turn, energy is sacrificed for the

sake of continuous maximum turn rate. In this case, the

* final energy Emin will be the lowest final energy of any

. .4
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of the turns to be examined and it will occur at a time

tmin, the minimum time to turn to the final conditions.

If the time allotted to turn is Increased to tf > tmen,

then the opportunity exists to perform the same turn in a

more energy conscious manner and therefore, Ef > Smip.

The more time allotted for the turn, the more energy can

be conserved or gained.

Definition of the Tradeoff

It is postulated that a final specific energy, Strade,
occurring at a final time ttrade rill maximize the

specific energy gradient defined as:

EG - Ef " E1  (2-3)
tf

Etrade, ttrade and 3Gmax can be graphically or

numerically deltermined by a line, eminating from Ei at

t-O being placed tangent to a final specific energy

veisus final time plot. This is qualitatively shown in

Fig 2-1. An additional method for determining ZGmax is

to plot the energy gradient versus final time and pick

the maximum value. This can be seen from Fig 2-2.

The determination of ttrade, Etrade and therefore

Z Gmax for turns beginning at equal specific energy

states, both below and above the corner velocity, is the

goal of this effort. This could be done using a single

4 problem formulation, such as maximize 3G, instead of

• * •" i5
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Figure 2-1. Final Specific Energy vs. Time-to-Turn
depicting the Maximum Energy Gradient
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Figure 2-2. Specific Energy Gradient vs. Time-to-Turn
depicting EGmax.
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defining a minimum time turn and s6veral maximum energy

turns, but it would not be as useful a result for

comparative purposes as the formulation chosen. This

method unambiguously determines the time-energy tradeoff.

8
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111. Generic Optimal Control Formulation

The system to be optimally controlled will be

represented by the dynamic differential system (Ref 1)

4.,.. + ! '

x*f(xturt) (3-1)

with initial and final time conditions

x(t0) - X0 , KI IX( t tfJ 0 (3-2)

Both x and i are n-dimensional state vectors, u is an m-

dimensional control vector, K is an s-dimensional vector

of final conditions and t represents time. The problem

objective is to transfer the system from the initial

conditions to the final conditions while minimizing the

Boiza form payoff function

J G o)X(tf= tf0 + vTK[x(tf]0tf-

Tit' [p'x,u,t) + AT(f-x)Jdt (3-3)

G is a scalar function of final time and final time state

conditions and F is a scalar integral function subject to

state and control values and time. The vector UT is an

s-dimensional constant Lagrange multiplier vector, and

XT is an n-dimenional Lagrange multiplier costate vector

otherwise known as the influence function vector. The

Hamiltonian is expressed as:

H(x,u,t) *F(x,u,t) +A T f(x,u,t) (3-4)

IAIM
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The control vector, u, is subject to both non-state-

dependent and state-dependent inequality constraints.

The non-state dependent constraints do not affect the

control formulation, only the control vector bounds.

They will be considered separately in section 4. For the

class of problems discussed here, it is postulated that

.the ith element of the control vector is subject to two

state-dependent inequality constraints

Cl(x,ui,t) $ 0, C2(x,ul,t) 6 0 (3-5)

Adjoining these constraints to the Hamiltonian, it

becomes

RH F(xu.t) + ATf(xut) + ,iCl(xuit)

+ M2C2(xuit) (3-6)

where pi and .42 are scalar Lagrange multipliers. The

conditions on #1 and /#2 are

.j - 0 if Cj(x,ui,t) 5 0
1-1,2 (3-7)

Jpj ,' 0 if.Cj(x,ui,U) - 0

if, and only if, both C1  and C2 are not both zero

simultaneously. If only one constraint is zero at any

time, applying the Euler-Lagrange optimality condition,

Hu = 0 (3-8)

produces the impulse response functions and the non-zero

value of Uj can be found from the relationship

10
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Hui w VuI + ?ATfui +MUjCjui .0 J * 1,2 (3-9)

However, if both state-dependent inequality constraints

are zero simultaneously, Eq (3-9) becomes

"Hui = Vut + XTfui + PlCiui + M2C2ui u 0 (3-10)

as Eq (3-10) In the only equation which yields values for

#1 or 92# unique solutions for #l and JP2 cannot be

obtained with one equation and two unknowns, and

alternate solution must be sought.

"The solution selected is to form a new state

dependent equality constraint from both Cl and C2

"simultaneously equaling zero (Ref 1:182, 2:2247, 3:sll).

This new constraint has the form

S(xt) - 0 (3-11)

However, this constraint is not explicitly a function of

the control vector and the optimal controls cannot be

found from this expression. Using the techniques of (Ref

3:118), it is found that the qth time derivative of Eq

(3-11) produces a constraint containing elements of the

control vector. This new constraint

s(q)(xut) a 0 (3-12)

is known as a singular arc and may now be adjoined to Eq

(3-6) to form the new Hamiltonian

11
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H * F(xu,t) + ATf(x,ut) + pC 1 (x,uit)

+P2C2(x,uit) + P 3 S(q)(X,ut) (3-13)

"For this new formulation, it should be understood that

Eqs (3-7) are still valid if only one constraint is zero

at a time. If both C1 and C2 are zero simultaneously,

then Eq (3-11) is satisfied and ul and JU2 are defined to

both be zero. The unique value for P3 is determined by

applying Eq (3-8) to Eq (3-13) which produces

lHu - Fu + ATfu + P3Su(q) a 0 (3-14)

In addition to the singular arc constraint, q

interior point constraints have been generated which must

be adhered to at the beginning and end of the arc, and

are represented in vector form as

M = S, 5f.... s(-)J - 0 (3-15)

The Hamiltonian, H, and the costate variables, AT are

discontinuous at the beginning of the arc, but continuous

at the end (Ref 2:2248). If the discontinuity, or

corner, happens at time tc, then the shifts in the values

of H and AT are the differences between their values just

before and after tc and can be expressed as

"H(tc') - H(tc+) - 17TMt I t tc (3-16)

AT(tc-) = AT(tc+) + nTMx I t tc (3-17)

S ,where 17T is a q-dimensional constant Lagrange multiplier

12
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vector. The values of 17T are found by simultaneously

solving Eq (3-16) and Eq (3-17).

In summary, given the system and conditions of Eqs

(3-1) and (3-2), the payoff function of Eq (3-3) becomes

SJ =G + TK

+ [F + AT(f-ji) + #T(lC,~)1dt (3-17)

and the lHamiltonian is expressed by Eq (3-12). The

optimal controls are found by applying Eq (3-8) to Eq (3-

13) subject to the constraints of Eqs (3-7), those

following Eq (3-13), and insuring satisfaction of the

Legendre-Clebsch condition

HUT•u > 0 (3-18)

The costate differential equations equal -Hx and are

iT 0 .(Fx + ATfx +ilClx + J 2 C2 x + P3Sx(q)) (3-19)

Application of the transversality conditions yield the

final time values of the costates and Hamiltonian to be

AT(tf) =Gx xt~f+ VTKX~X(tf),tfj (3-20)

H(tf) a-G~xtf~t VT(tf)tfttf (3-21)

which completes formation of the three point boundary

value problem (TPBVP). Eq (3-21) applies only to the

free final time problem. The interior point constraints

of Eq (3-15) and the corner discontinuities of Eq (3-16)

13
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and Eq (3-17) must also be satisfied when switching onto

or off of the singular are of Eq (3-12) at the corner

time, tc.

--I1
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IV. SpecOifio Optimal Control Formulation

Point Mass Aircraft System Definition

To satisfy Eq (3-1), the aircraft for both minimum

time and maximum final energy turn problems will be

represented by the following point mass equations of

motion (Ref 12)

- V Cos Y Cos (4-la)

= -V cos>sin4# (4-1b)

= -V sin>' (4-1c)

S= g[ D siny1  (4-Id)

V 1W
" * rL cost - cosy j (4-ie)

- -g sini ) (4-1f)

The variables x, y and h form the three axis position, V

is velocity, Y is the flight path angle and I4P is the

heading angle. T is the constant maximum available

thrust, D is drag, L is lift, W is a constant weight and

g is the acceleration of gravity. The expressions for

lift and drag are

L - ¼ Po'V 2ACL (4-2a)

D - h po gV 2A(CDO+kCL 2 ) (4-2b)

where A is the reference wing area, CL is the lift

coefficient, CDo is the zero lift drag coefficient and k

is the induced drag parameter. The parameter P/OO is

"the exponential air density expression

15
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po a - poe 19 (h'hD) (4-3a)

where D is a constant and hD is the minimum altitude of

interest. Least squares curve fits to data from

atmospheric tables (Ref 8) producerh]
PoT - 0.0023769e 3 0 4 77J (4-3b)

_[h-36089]1
floas - 0.00072736e 20953 J (4-3c)

Where Eqs (4-3b) and (4-3c) represent the troposphere and

stratosphere respectively. For this exercise, only Eq

(4-3b) will be employed due to the altitudes at which the

aircraft maneuvers will be examined.

The control vector is

U. u [ CL7r (4-4)

where # is the bank angle, CL is the lift coefficient

and VT is the throttle setting. The constraints on the

control vector are

-180o0 * 5+ 1800 (4-5a)

C1 - (CL - CLmax) < 0 (4-5b)

C2 - (CL - 2 WNmax) : 0 (4-5c)

C c3 - Cr00 (4-5d)

"-0.5 : VT < 1.0 (4-5e)

where CLmax is the maximum aerodynamic lift coefficient

"and Nmax is the maximum allowable normal load factor.

16
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From Eq (4-3) it is seen that the bank angle is

unbounded, the lift coefficient muut always be greater

than zero, less than both the maximum aerodynamic lift

"coefficient and that for achieving maximum load factor

and the throttle setting may vary from half reverse

thrust to full forward thrust settings.

High Specific Power Aircraft - Corner Velocity Constraint

If both Eqs (4-5bc) are simultaneously zero, Eq (3-

11) is formed and is

S(x,t) - oV 2 - 2 WNmax W 0 (4-6)

PoACLmax

This expression must be satisfied if sustained maximum

turn rate flight at the corner velocity is to be part of

the optimal trajectory. However, it is readily seen that

Eq (4-6) is not explicitly a function of any control and

"therefore successive time derivatives must be taken until

Eq (3-12) is formed. This equation is

S(x,t) = V2 0hh + 2oVW = 0 (4-7)

Substitution of Eq (4-lcd) into Eq (4-7) and rearranging

the resultant expression yields

S(xfuft) 9 ~-D sin? (1 #.V2)1  0 (4-8)W|

r'i

This expression is a function of throttle setting and

lift coefficient and satisfies the requirements of Eq (3-

17
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12). Therefore, only one interior point constraint

"exists, Eq (4-6), and Eq (3-15) becomes

.M = S(x,t) aV 2 - 2 WNmax * 0 (4-9)

PoACLmax

The Hamiltonian of Eq (3-13) can now be formed and is

H - XXX + Xyi + Xhh + .+ X, + AX.*

+ p2 gI - Nmax)+ - sinY(1- #V 2 )J (4-10)

W 29

For this type of aircraft problem, there is no integral

function F(x,ut) and the constraint C1 of Eq (4-5b) is

not state dependent and need not be adjoined to the

Hamiltonian. Neither M nor H is explicitly a function of

time and therefore from Eq (3-16) it is seen that

Mt I ttc a 0 .. H(tc" a H(tc+) (4-11)

Ht n 0 '. H(to) a H(tc) - H(tf) - constant (4-12)

Recalling Eq (3-17) and applying Eq (4-9), it is seen

"that only A h and Xv vill have interior point

discontinuities vhich are

Ah(tc') Xh(tc+) + 1'.8cV 2  (4-13a)

"A"v(tc') " Xv(tc+) + 217aV (4-13b)

Upon substitution of zq (4-13) into Zq (4-11) it is found

that

.-. ~~~~ -4- -A.. . . . . . . . .
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17"v (4-144)
* 2Vo

Resubstitution of Eq (4-14) into Eq (4-13) produces

Xh(tc-) - Xh(tc+) - Av(tc+)O-v (4-15a)
2

Xv(ta) a 0 (4-15b)

The discontinuity in Xv and the dependence of Xh(tc-) on

Av(tc+) makes forward integration of the differential

equations impossible and backward integration from the

final conditions to the initial conditions is required.

This will be discussed in Sec 5.

Optimal Controls

The optimal controls are defined by applying the

Eulor-Lagrange condition, Eq (3-8) and the Legendre -

Clebsch condition, Eq (3-18) to the Hamiltonian of Eq (4-

10). To find the optimal bank angle, * , two equations

must be satisfied. They are

H# = k.2 (-sin * ) + __._ Lcos - 0 (4-16a)
or vcosV' ^,W
o H# = -X. sinO +A X#CS = 0 (4-16b)

. COSY
and

Hea - AtcosO - sine > 0 (4-17)
cosg

In order for both of these conditions to be satisfied

simultaneously, the only solution is
co.-X;' AYcos , i, 'coo

Cos , 2 sin#- c (4-18)
Cos VA7 + \cos/

19
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Upon substitution of the non-unique coso and sin#

expressions into Eq (4-17) it is seen that

H + 2 0 2: (4-19)

"thus insuring a minimizing control at all times. Eq. (4-

18) will produce the optimal bank angle history.

To define the optimal lift coefficient, again two

conditions must be adhered to. They are

HCL = -2X DVCL + 2L.XLCLcosO + 916 LCLsin#
W WV WVcos

L+ Dr- w 4 JcJ " 0 (4-20)

HCLCL . - /13 D - • 23cc > 0 (4-21)

Rearranging and substituting Eq (4-17) yields

HCL = -(,v + /1 3)DCL - (H". - P2)TCL , 0 (4-22)
V

and
HCLCL = -( Xv + P3)DCLCL 2! 0 (4-23)

For an interior CL control which is within the

constraints of Eqs (4-5bc,d) both #2 and AO are zero.

Therefore, Eq (4-23) states that for an optimum interior

controli

k v : 0 (4-24)

as DCLCL is always positive. Eq (4-22) produces the

4 optimum interior control
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,'.., CL =kVO- (4-25)S":."'2kV~kv

If any of the bounds of Eq (4-5b,c,d) are exceeded by Eq

(4-25), CL is set to the boundary value exceeded. If

maximum load factor flight occurs, Eq (4-5c) is zero, and

the non-zero value of #2 is calculated from Eq (4-22) to

be

4 kWNmaxkv H00 (4-26)
P2 -+

To determine the condition of HCL during corner velocity

flight, the throttle history must be examined first.

The two final equations which must be investigated

S$Ifor the optimal thrust control are

"H, = ( Xv + /3)g! - 0 (4-27)
• W

and
H,, = 0 (4-28)

Eqs (4-27) and (4-28) demonstrate that the throttle is a

singular control becauae it does not appear in Eq (4-27).

* Therefore, unless 93 equals Xv, which can only happen

during sustained corner velocity flight, the throttle

setting cannot be an interior value, but must be a

minimum or maximum boundary value depending upon the

value of Av. Using Eq (4-5e) and Eq(4-27) it is

determined that
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7,- 1.0 for Av 0 (4-29a)

7.. -0.5 for v > o (4-29b)

If A•v equals zero, which happens as the corner velocity

arc is entered as shown by Eq (4-15b), then the throttle

value is determined to be

77. 1.0 for v •O0 (4-30a)

7r- -0.5 for iv v 0 (4-30b)

For flight along the corner velocity arc, the partial or

interior throttle setting can be determined from Eq (4-8)

to be

1 Dmax + W sinY (1- 2)_ (4-31)
T Tg

For this interior control to be a viable solution, from

Eq (4-27), it is seen that

jJ 3  "v (4-32)

Upon substitution of Eq (4-32) into Eq (4-22), it is

determined that along the corner velocity arc

HCL - - I!_LCL : 0 (4-33)
V

as all of the components of HCL are always positive.

Therefore, Eq (4-33) demands that CLmax be the optimum CL

for this condition which corroborates the requirements of
Eq (4-6).
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Costate Differential Equations

Of the three EuleL-Lagrange conditions, two have been

developedl one for the state derivatives of Eqs (3-1) and

(4-1) and a second, Eq (3-8), to determine the minimizing

optimal controls just discussed. The third condition, Eq

(3-19), deals with the costate differential system, and

produces the following equations:

I. 0 (4-34)

, 0 (4-35)

ih- D X v+A'3 ) +Lh(~ 1- M2 (4-36)

-v M- q yDv( Xv + #3)+Lv(!!-. - #2)JW V

+ -1( x,, + x t,).s1n Y X h + P 348V)

- cosy( X1 Cosb+ xy sint&) (4-37)

-. sin[ V(,x\xcosb + Xy sin.b) - jJ
+ cosy 1_x #M(lV2)J. AhV]

- X.otan y (4-38)

i# V cosY ( A x sint - Xk , cost ) (4-39)

Aircraft Model

The coefficients used to complete the point mass

aircraft model are identical to those of (Ref 5:97). The

quantities in table (4-1) were used to calculate the

initial altitude and airspeed values of Table (4-2).
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4 .. Name Parameter value

Thrust, max T 18,225 lbs*
Weight W 12,150 lbs
Maximum load

factor Nmax 7.22
Reference
Wing Area A 237 ft 2

zero lift
drag coefficient CDo 0.02

induced drag
coefficient k 0.05

maximum
lift coefficient CLmax 1.0

• - This thrust corresponds to T/W * 1.5

Table 4-1. Point Mass Aircraft Model Parameters

Transversality Conditions

As stated in Sec. 3, the transversality conditions,

Eqs (3-20) and (3-21), complete the formation of the

TPBVP. For the minimum time and maximum energy turns to

be investigated, the state dependent conditions of Eq (3-

2) are as shown in Table (4-2). From that table, it is

evident that for all cases examined,

K [ x(tf).tf)J. [ Y (4-40)
|. Ir It-tf

where 7r in this case represents 1800 in radians.
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Employing Eq (3-20), it is determined that

* [Xx Ay Xh Xv XY X1 ttf =[0 0 Gh Gv 'l V2 J (4-41)

which are not a function of the state final conditione,

K. This result holds for all three problem formulations.

It is noted that from Eqs (4-34), (4-35) and (4-41) that

Xx and Xy are always zero, have no effect upon the

problem solutions and may be eliminated from the

formulations from here on. For simplification, Eq (4-39)

now becomes

* 0 (4-42)

Eq (4-41) shows that values for Ah and Xv at the

final time can be explicitly calculated, but values for

X and A# must be judiciously selected. No

additional help can be provided for selecting initial

guesses for the finals values of XA and X# for a

fixed final time probleml only that they together must

generate a feasible final time bank angle.

However, for both free final time problems, using Eqs

(3-13), (3-21), (4-8), (4-40) and (4-41), it can be shown

that at t* tf

, +v• + #ts + Gtf 0 (4-43)

As noted in (Ref 1:183), when a singular arc of this

type is part of the optimal trajectory, the trajectory

* 'terminates on the arc. This is helpful for two reasons:
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"1) the final velocity is the corner velocity and 2) the

final load factor is maximum allowable load factor. Upon

substitution of these two facts plus Eqs (4-le,f), (4-17)

(4-19) and quantities from table (4-2), it is seen that

S•_•/ 2 + X, 2 +Aye-Gtf 0 (4-44)

vV v

With one equation and two unknowns, one variable must

be selected. To help make the best selection, two

observations can be made, 1) based on Eq (4-40) a

positive, right turn must be executed and 2) from Zqs (4-

if) and (4-18), a negative value of X# must exist to

insure a right turn. Therefore, A. shall be selected

and X# calculated from the relationship

x.= -y(V) (2Gtf - - 2v(4-45)

To insure that a negative radical is not chosen ky is

limited by solving Eq (4-44) for Ay and substituting

X• -0. The result is

-Gf I; Ny GtfY_ IN1(4-46)

It is of interest to plot Eq (4-44) to aid in selecting a

reasonable bank angle at the final time. Fig 4-1 is

plotted as an example for a minimum time-to-turn problem

55 274 z
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High SpeedMin Time Solution

ClimUb Of ma)iL1Za

0=82°0im

dive 1000 fps

750 fps

500 fps

Low Speed
Min Time Solution

Figure 4-1. Minimum Time Final Velocity Contour Plot
for selection of Xy and X#
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(Gtf-l) for final velocities of 500, 750 and 1000 fps.

As seen in the figure, there is a locus of maxima for all

velocities which is a straight line. Solving Eq (4-44)

for the value of Ay which maximizes X# yields.

X V , Afmax V (4-47)
g(N2-l g'N 2-1

The values of Eq (4-47) in turn yield

tan * - N2 1 (4-48)

which is the tangent of the bank angle for a level

coordinated turn at the final time. Note that the locus

plotted corresponds to 820 of bank for 7.22g's only.

Therefore, choosing combinations of AX and A# above

the locus will cause the aircraft to pitch up at tf and

combinations below it will cause a pitch down. A similar

plot can be generated for any other free final time

problem.

In summary, the costate final conditions are stated

as follows:

a) minimum time

G tf 0 0 0 0 ok (4-49)

- b) maximum energy

G -i-Ef 0 0 -1 -V A, A, (4-50)

* 29
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c. maximum energy gradient

G . i-f00 -v 0 (4-51)
tf t-? 0 -g f

Substitution of table 4-1 quantities into Eq (4-6) yields

* - 558.07 0/L (4-52)

From Eq (4-52), it is clear that the selection of a final

altitude fixes the final velocity. Along with a choice

for a final time, the values of Xh and Av can be

determined for all the problem formulations investigated.

For the selection of Ay and X# for fixed final

time problems, arbitrary numbers which generate a

feasible final bank angle are the best guesses. However,

for free final time problems, use Eq (4-52) for a

velocity, select a final bank angle for pitch up or pitch

down at tf, pick X- off of Fig 4-1 using a protractor

and substitute it into Eq (4-45) to calculate X#. This

process will always insure that Hf + Gtf - 0. The

solutions for A, and A* for both the high and low

speed minimum time cases are plotted for reference on Fig

4-1.

Once these final conditions at tf are established,

the state and costate differential equations (4-1) and

(4-34) through (4-39) can be integrated to the initial

conditions at to. The methods of integration and search

for the optimum control trajectory are covered in Sec 5.

30
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V. Numerical Method for Solution of the TPBVP

As stated in Section 4, the dependence of Xh- and

X v- on AV+ makes forward integration of the state and

costate equations from initial to final conditions

impossible. Backward integration from the final initial

conditions must be employed for both minimum time and

maximum energy problems.

Minimum Time-to-Turn TPBVP Solution

Given the 2n+l dimensional final condition vector,

Zf, having the quantities

ZfM[X Y hV Y kt' Xx Xy XhXv Xy X# HJ

,. 0 1800 0 0 0 0 P1  v2 -11 (5-1)

and the 2n+l dimensional initial condition vector, Zi,

having the quantities

Zi Y h V V it Xy kh v XK, X# HJ

Sn[O 0 hi Vi 00 0-------------- 1J (5-2)

two subset vectors relating final condition variables and

initial condition requirements can be generated.

It can be seen from Eqs (4-1) and (4-34) through (4-

39) and (4-41) that the down range and cross range

variables X and Y and their respective influence

"functions X x and Xy have no effect upon the problem

solution as they are dependent variables. They can be

eliminated from the solution for the sake of expediency.

31 .
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It was learned from Sec 4 that a selection of the

altitude at tf dictated the final corner velocity.

Therefore, velocity at tf is no longer a variable.

Additionally, the use of this altitude-velocity pair in

concert with the requirement for Hf + Gtf n 0 allowed for

the calculation of A# at tf as a function of Xy.

Now, A# and Hf are no longer variables. As this is a

free final time problem with an interior time constraint,

tf and tc must be added as variables to be selected

before the integration is performed. The final condition

variable subset vector, z, which will be varied to reach

the initial conditions is therefore

z - h X, tf tc (5-3)

Ok
These four final time variables match with the four

initial time requirements

zi hi Vi Yi 01 (5-4)

After integrating from the non-optimal z vector

conditions at t-tf to tuto, there will be a non-zero

residual miss vector R formed by the difference between

the initial time results and the desired conditions. R

is generated from Zl and is

R - h-hi, V-Vi, , tto (5-5t

.32
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The objective of the TPBVP is to select the variables in
*1•

Z which when integrated from tf to to drive the residual

vector R to zero. In order to reduce the values in R

from one iteration to the next, the direction and

magnitude of the changes to the Z variable values must be

determined. This can be done by solving a Taylor series

expansion of R about the z vector. From (Ref 14:686),

this is found to be

R(P+ dz) - R(z) + O..R 6z + 1 5zT a 2 R 6z

Oz 2 -Fz2

+ Higher Order Terms (5-6)

Assuming that the second and higher order terms in Eq (5-

6) are negligible with respect to the first order term's

influence on a solution, then the equation for change in

R, ARe due to a variation in the final time vector z,

dz, is

AR R(z+ 6z) - R(z) " OR 6z (5-7)

It is desirable that after a single variation of z,

due to an increment 6z, the term R(z+ 6z) will diminish

to zero. In order for a vector 6z to be calculated

which will cause R(z+ 6z) to be zero, Eq (5-7) is

modified to be

AR * - R(z) = OR 6z (5-8)

0 z
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Using Newton's Method of Tangents (Ref 6:170) to solve Eq

(5-8) for 6z, it is found that

6z = - 0R 1 R(z) (5-9)
10z

P.(z) is a straight-forward numerical difference as shown

in Eq (5-5). The 4x4 first order derivative matrix is

formed using a numerical central difference scheme (Ref

6:220) operating on each of the four variables in z.

This is then inverted and used to calculate 6z in Eq

(5-9).

d z is the vector along which a search is conducted

to find what fraction of its magnitude will cause the

biggest reduction is the R(z) vector. Should a full

magnitude search along 6z not reduce the R vector on

the first attempt, reductions in the magnitude of 6z

and subsequent searches are required until the maximum

reduction in R is reached. The equation for reduction in

6z is formed using the Golden Section Ration (Ref

6:460) and is

6zJ+l - 0.618034 *6zJ J >I (5-10)

Reductions in 6z are required until the maximum reduction

in R is achieved.

In summary, the following steps are taken tc obtain

the optimal solution for the minimum time problem:
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1) Select values for the elements of z which comply

with the transversality conditions of Section 4.

2) Integrate the state and costate equations

backwards constrained by the requirements of

Section 4 from tf through tc to to and form the

"* residual vector R.
' 3) Numerically form the derivative matrix •.R by

integrating backward to find the variations in R

due to independent variations in the z elements.

4) Calculate dz from Eqs (5-9).

5) Modify the values of z by 6z and perform a search.

6) If a reduction in R does not occur on this

search, decrease 6z according to Eq (5-10) and

S.- •repeat step 5 until a reduction occurs.

. 7) If the root sum square (RSS) of elements of the

reduced R vector is greater than 10- 4, then

repeat steps 2 through 7.

8) If the RSS of R is less than 1 then the

solution has been achieved for the minimum time

problem.

Maximum Energy Turn TPBVP Solution

The maximum energy turn formulation is nearly
A

identical to the minimum time formulation. As Eq (4-43)

does not apply to a fixed final time problem such as

this, there are only 2n final conditions in the Z vector.
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The resultant modifications to the a vector are that tf

is no longer a variable and A# has taken its place.

"This still leaves 4 variables and 4 equations to solve

I and the same methods used for solving for 6: can be

used.

Maximum Eneray Gradient TPBVP Solution

"The method used to solve this formulation is

identical to the minimum time-to-turn method. Only the

constant value for the Hamiltonian has changed due to the

new values for Gtf.

4.,
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VI. 6nticipated ResuLts

No predictions for the values of ttrade, Etrade Or

",Gmax can be made other than the qualitative predictions

on Figures 2-1 and 2-2. However, qualitative predictions

about the control histories can be presented. They are

presented in Figures 6-1 through 6-6.

"Optimal Control Histories

The predicted bank angle histories for VI > Vc are

shown in Fig (6-1). For the minimum time turn (curve

'a'), an initial bank angle of less than 900 is required

to climb while turning to bleed off airspeed as rapidly

as possible. Subsequent to reaching the corner velocity

"arc, the bank angle is increased to be greater than 900

-,- •to restore the flight path angle end condition. Given

more time in which to complete the turn, a slight

decrease in the initial bank angle and a slight increase

in final bank angle should be in order as climbing for a

longer duration to a higher corner velocity should occur

with resultant greater flight path angle excursions.

However, the basic shape of the history should remain

intact.
I'

The lift coefficient histories shown in Fig (6-3) all

represent maximum load factor flight until the corner

velocity arc is encountered at which point CLmax is the

Soptimum control. An interior lift coefficient may occur

should time be available, and insufficient climb and

- acceleration capabilities exist at the higher altitudes

F 37
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at the maximum load factor.

The throttle history for Vi > Vc flight in the most

provocative control to discuss for this problem. From

A .(Ref 1), it is known that the throttle setting will be

minimum until the corner velocity arc is intercepted at

which point, an interior thrust control will be employed

(curve 'a'). Given extra time to complete the turn and

maximize the final energy it is postulated that the

-, throttle will initially be at minimum setting and then

switch for some time to maximum throttle prior to an

interior corner velocity arc setting. This would be a

"bang-bang-singular" throttle control (curve 'b'). This

combination is proposed as it would require less power

* and time to decelerate from high speed and then

reaccelerate to corner velocity arc than the converse.

Given enough time, no minimum control bound would be

expected; only maximum-singular control (curve 'c') as

* will be discussed for Vi >Vc.

For the case where Vi < Vc, the control histories

should differ quite markedly from the Vi > Vc case. In

Fig (6-2), the initial bank angle for the minimum time

turn, curve 'a', should be the largest of all the turns

so as to create the greatest acceleration possible

terminating in the smallest bank angle. Given more time

to turn, (curve 'b'), less diving and more climbing would

result, thus reducing the bank angle requirements. if

- sufficient time and excess power are available, the bank

* 38
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angle may start at a value, less than 900 and finish

greater than 900 to maximixe final altitude and airspeed.

The lift coefficient histories, as seen in Fig (6-4),

should all be at maximum lift coefficient unless

sufficient time to complete the turn is supplied wherein

a corner velocity arc is not part of the optimal history.

In that case, an interior lift coefficient may occur, but

is not expected in this exercise.

From Fig (6-6), the throttle histories for Vi<Vc all

contain maximum throttle settings until the corner

velocity arc is reached (curve 'a'), otherwise, known as

"- "bang-singular" control. As time to turn is increased,

climbing and accelerating to higher speeds should cause a

larger tc value and a higher corner arc throttle setting

(curve 'b'). Given sufficient time to turn, a corner

velocity arc may not be part of the optimal history and

the result is a maximum throttle setting throughout the

turn. The shape of the throttle history during corner

velocity flight is dictated by an altitude rate and

flight path angle rate combination.

None of the plots presented are intended to be

construed as predictions of exact values in either time

or control variable. They are intended to predict trends
4

for comparisons between minimum time and maximum energy

turns.

I3
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Figure 6-1. Bank Angle vs. Time for V>
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Figure 6-2. Bank Angle vs. Time for V < V
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Figure 6-3. Lift Coefficient vs. Time for V
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Figure 6-4. Lift Coefficient vs. Time for Vi<VC
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Figure 6-5. Throttle Setting vs. Time for V >Vc
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VII. RESULTS OBTAINED

The equations, conditions and constraints for all

"three problem formulations, set forth in sections 4 and

"5, were programmed on a 32 bit DEC 20/20 digital computer

in the Space Division Computer Center. A copy of the

computer programs, OPTMYZ and its subroutines, are
located in the appendix. The results of this program's

execution are presented in this section.

Minimum Time-to-Turn Results

As the costate variables determine the optimal

controls which in turn, determine the state trajectories,

the results are presented in that order. Time history

plots for the costates, controls and states are presented

in figures 7-1 through 7-9. By examining these plots,
N .o

several observations can be made.

First, the costate histories figs (7-1) through (7-3)

are well behaved and are primarily monotonic; the

Sdiscontinuities in Xh and Xv do not create erratic

behavior or unexpected characteristics. It may be

2": coincidence and of no consequence but it is of interest

•I. to note that for Xh when t < tc, is virtually a constant

*# while CL is on the Nmax boundary for the high speed

*•'-'- solution but varies smoothly when CL is equal to CLmax

for the low speed solution. Otherwise, Ah acted as

expected. Xv responded per the optimal control

"requirements of Eq (4-24) through Eq (4-32). It

"43



,P.
AP IT /GAE/A/ 78D- 5

..- ... ... .
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Figure 7-1. Xh vs Time for Minimum Time High
"and Low Speed Solutions

oHigh Speed Solution

24 4 6

SFigure 7-2. Xv vs Time for Minimum Time High
•: and Low Speed Solutions
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exhibited no unexpected trends. Figure 7-3 shows the

correlation between the bank angle, flight path angle,

XA and the constant AX . The bank angle history can be

determined from the plot using a protractor the same way

as was done in fig (4-1) and can be correlated roughly to

time using the tick marks at one second increments.

Again, these parameters all vary smoothly with time.

The control histories are shown in figures (7-4)

through (7-6). The bank angle history shapes were as

expected although the amplitudes were larger than

anticipated. The lift coefficient histories were exactly

as expected for both high and low speed solutions. The

shapes of the throttle histories were as expected,

although like the bank angle, their excursions were

greater than anticipated. As seen in fig (4-6), the

singular arc portion of the solutions appear to go right

up to the boundary denoted by the arrow heads. In

actuality, the values of 7r at these two points are 7r =

0.9999 at t = 6.12 secs for the high speed solution and

C if 7 -0.4997 at t = 6.22 sec for the low speed solution

thus keeping them interior to the boundaries. However,

in order to insure that 7r remained interior, a special

search routine in the integrator had to be programmed to

look for the point, if one existed, where the arc touched

the boundary, thus ending the arc. More will be said

about this in the technique problems section. In

retrospect, it makes sense that the throttle would go

45
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Figure 7-4. Bank Angle vs Time for Minimum Time
High and Low Speed Solutions
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CLmax (Low Speed Solution)
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right up to the boundary even on the arc because the

controls will use all of the authority they have to

minimize the time to turn. Just as in a bang-bang

controller, a bang-singular controller should be expected

to go from boundary to boundary while meeting its

interior control constraints.

Turning to the state trajectories starting with Fig

"(7-7) it is seen that both solutions end up on the

singular arc and both met a small loss in energy (-262 ft

for low speed and -1258 for high speed). Both maneuvers

are basically planar, the steepness of which are dictated

primarily by the initial bank angle values. This

steepness correlates directly to the flight path angle

histories of fig (7-8), the low speed being more vertical

a maneuver than the high speed. The main reason for them

not both being vertical plane maneuvers is that the

throttle settings on the arc were already up against the

boundary. However, increasing the thrust-to-weight ratio

to approximately 1.9 or greater would result in two

vertical maneuvers where the arc throttle histories would

not be nearly so close to the boundaries because the use

of gravity would be maximized. The heading angle

histories show nothing unexpected. The low speed

solution has higher peak turn rates due to the steeper

flight path angle history. Tables (7-1) and (7-2)

summarize the key values for the states and costates for

the low and high speed solutions respectively. From both

49
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Figure 7-8. Flight Path Angle vs Time for Minimum
Time High and Low Speed Solutions
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+
" "" tfll.97 t *S.378-tc" t0 0 R

Ah 0 0.0002269 0.0001010 0.0002213

AV 0 -0.009410 0 -0.004695

Xv -3.677 1.616 3.398

-1.087 -1.087 -1.087

X -285.6 2565.1 0

Y 1981.9 818.0 0

AE -262 41.17 0

h 19809 23123 24999.5 rh=-l.-4 6 2 6

V 772.4 815.5 528.6 rv=0.753 9

0 -1.158 0.0787 r. -0.0787

3 .14159 0.9703 0.0782 r#-0.0782

111R1 -0. 8914

Table 7-1. End and Corner Values of States and Costates
e for Low Speed Minimum Time Solution
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U, "t tf10.87 t€c+ 4 495-t .t0n R

Xh 0 0.0002078 0.0001103 0.0001101

Xv 0 -0.008138 0 0.005010

"X, 2.120 -1.917 -3.108

.- 2.1075 -2.1075 -2.1075

"X 1239.5 3252.2 0

Y 3082.0 965.6 0

"AE -1251.8 -4668.3 0

h 19033 16372 14998.3 rh-l . 7 4 38

V 762.6 730.0 960.05 rv-0. 373 4

7 0.7714 0.006517 r =0.006517

3.14159 0.8626 0.06289 r =0.06289

IIRII -1.7S55

Table 7-2. End and Corner Values of states and costates

for High Speed Minimum Time Solution
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tables, it is seen that the end conditions were not met

to the accuracy that was expected. The norms of the

residual vectors shown are as low as could possibly be

achieved with the program, computer and methodology

employed.

Problems with the Technique

The search for the optimal controls began by using a

variable stepsize integrator and allowing only small

"increases in the total time allotted for the turn to

occur on each iteration to insure stability in

approaching the solution. However, after achieving a

norm of the residual vector of approximately 10, fixed

stepsize integration had to be employed. The prime

reason for this is due to the special programming which

had to be added to the integrator to find the point in

time where 7 went so close to or touched the boundary

during the search phase. This search could not be

performed using variable stepsize integration.

The use of small, fired stepsize integration helped

to get closer to the optimal solution, but the extreme

sensitivity of the norm of the residual vector to the

final value of Xy created havoc with finding the minimum

in the state space. As shown in fig (7-10), it is seen

that the standard parabolic minimum seen in bang-bang

minimum time problems has been replaced with a gross

Sdiscontinuity in the norm at the point where the
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Figure 7-10. Norm of Residual Vector vs Xv for
Minimum Time High and Low Speed Solutions
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magnitude of A, gets large enough to create a steeply

banked planar maneuver which causes 7r to require a

boundary value at the arrow head points on fig (7-6).

This causes the time at which the switch from the

singular arc to the boundary value control to snap back

and forth during the search for the minimum. In the low

speed case, the change in X7 from -3.677 to -3.678

caused a discontinuous jump in the norm from less than

1.0 to more than 100. Whether the sensitivity matrix for

calculating 6z was formed using a forward, central or

backward difference scheme was immaterial. The z

components being so tightly coupled could not be modified

so slightly in the proper 6z direction to reduce the

norm any further than that shown in tables (7-1) and (7-

2).

Even though the end conditions were not met close

enough to form a residual norm of 10- or less, the

trajectories shown are extremely close to the optimum and

demonstrate that the technique and problem formulation

are correct and feasible.

Maximum Energy Turn Results

No feasible trajectories were generated for the

maximum energy turn formulation which came close to the

desired end conditions. No norm of the end conditions

could be achieved which was less than 50 to 20 in

magnitude. Innumerable attempts were made to find a
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single set of final time conditions which would generate

one feasible trajectory from which to propagate the

others. Several fixed final times were used as starting

points, but all times generated approximately the same end

results. The multipliers Xy and X# grew an order of

magnitude with each iteration surpassing values of 1013

and growing with no reasonable reduction in the end

condition norm. No definite reason can be given for this

type of performance; perhaps the linearity of the

aircraft thrust and drag characteristics create a flat

state space where there is no obvious maximum energy

turn.

Since no maximum energy turn solutions were achieved,

Sthe graphical method of fig (2-1) for depicting the

energy-time tradeoff can not be used.

Maximum Energy Gradient Results

Unfortunately, the same type of results, as in the

maximum energy turn attempt, occurred here as well. The

values for AX and ?0 were in the vicinity of 108 and

growing steadily showing no reduction in the norm of the

end conditions. Additionally, the final time would not

settle in one neighborhood but would grow and decrease as

the attempts progressed. Once again, no positive

explanation can be offered other than presented in the

previous section.

• ,.No maximum energy gradient solution was achieved
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Susing this method either. All three problems used pure

"optimal control formulations and ran into extreme

difficulty in achieving a solution. Evidently, these

formulations do not lend themselves well to methods using

Lagrange multiplier techniques and may be more well

suited for parameter optimization formulations.

A•
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"VIII• CONCLUSION

The goal of this effort was to define a tradeoff

between time-to-turn and energy in a turn using the

classical optimal control formulation. First, a minimum

time-to-turn trajectory was to be generated for initial

conditions of equal energy both above and below the

corner velocity for that energy. Second, maximum energy

trajectories beginning at those same initial conditions

were to be generated for final times greater than the

minimum time. From all of these trajectories, the

maximum energy gradients, defining the time-energy

tradeoffs, were to be graphically identified. Thirdly,

these tradeoffs were to be corroborated using the maximum

energy gradient formulation.

This project was successful in defining the

equations, conditions and constraints required to reach

the above goals. The computer program OPTMYZ was written

and executed on a DEC 20/20 digital computer which was

successful in del'ining the two minimum time trajectories

for the initiel conditions above and below the corner

velocity conditions. The results are presented in

section 7.

This effort failed to produce feasible maximum energy

turns or the maximum energy gradients required for the

tradeoff definition. Therefore the time-energy trade can

not be identified for either of the initial conditions
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for the aircraft model used and the formulations

employed.

Recommendations for further work in this area are

presented in section 9.

U61
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IX. RECOMMENDATIONS

The following are prioritized recommendations for

further research in the area of time-energy tradeoffs.

1) Continued effort should be placed upon

defining the time-energy tradeoffs as defined

in section 2 using the formulations presented

herein. Emphasis should be placed upon

developing a technique which will better

determine the minimum cost function for a

complex singular arc problem such as the

minimum time problem presented.

2) The time-energy tradeoff should also be

determined as in recommendation (1) using a

parameter optimization formulation to study

the tradeoff of complexity versus accuracy.

Based upon these results, the remaining

recommendations would use the superior

technique for future work.

3) Recommendations (1) and (2) should then be

repeated using a more realistic aircraft

model. There should remain regions in the

altitude velocity map where high specific

power eýfsts, but the thrust should vary as a

function of altitude and Mach or Reynolds

number as should the lift and drag

parameters. CLmax, CDo and k. A thrust
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*pinch, dynamic pressure,, Mach number and

"altitude placards could be added for realism.

,4) Recommendation (3) should be repeated with

the addition of a fuel flow or varying weight

and where

"" - -c1T7r (9-2)

5) Recommendation (4) should be repeated with

the performance index modified to pay a

penalty for excessive fuel consumption. That

is

G x(tf),tf - f- )t + (9-3)

,...-..,, (Wf-Wi)tf 3g'lwf-wi itf

"This effort would be the most direct way of

' ilooking at trading time and fuel for energy

with the most realistic model for an

aircraft.

6) Using the results from the previous

recommendations, a quasi-linear feedback law

could be developed for two modes of

operation. The first mode would be an

algorithm for minimum time turn guidance free

. from the use of influence functions and the

second mode would be for a maximum time-

energy-fuel tradeoff based upon only state

_* and state rate feedback.
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7) The culmination of this series of efforts

would be to program these feedback laws into

a manned simulator with visuals and head-up

displays to examine the man-machine

applicability.

a!...
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I',

Appendix

Computer Program:

OPTMYZ
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dimension x(1QT) xf(IO) xi(lQ),dx(4),r(4),rm(14),rp(4),dz(14),
&drdz(14,4),drdzi2L,4),dI4,14)
real k,nmax
common a,beta,olmax ,cdo,g,k,nmax ,tmax ,w,xi14
common c~lnmax,hfifi,jf~lag,qa,rosig

-' ~data xi(6) ,xi(7) ,xf(6) ,xt'(7)/@.Q,Q.,Q.G,,3.1'4159/
data a,beteaclmax,cdo,g,k,nmax,tmax ,w/
&237.QvaQ.0QQ032811628, 1.Q,6.@2,32.174,QoQ5,7.22,
&18225.Q, 12150.0/
write(5, 1)

1 format(lx,'load lrlag f~or tmin,Emax or !Edotmax')
read(5,O) lflag
write(5.2)

2 format~lx,'load hf,lambdagammat,lambdapsif,tf,tc~hi,vi')
read(5,*) xf(1),xf(2),xf(3) ,tf,tc,xi(1),Xi(4i)
xi14zxi(14)
write(5,3)

3 format(lx,'do you wish to print each step(yes#0,no*l)?')
read(5,O) iprint
call assign(xf,xi,tf,lflag)
do ~4 i=1,19

14 x(i):xf(i)
call integ(0Q,x,tf,tc,iprint)
xf'(9):ox(9)

call ndmiss Cx, xi,r ,rnorm)
write(5,5) r,rnorm

5 format(lx,'r and rnorm',/,5(lx,flO.14))
it=@

6 it~it+1
write(5,7)

7 format(lx,'do you want to continue?')
read(5,*) choice

if(choiceoeqo@) go to 16
if(rnorm~le,1.Q019) go to 16
do 12 i=1,14
ii~i
iii=1
do 8 j=1910

8 x(j)=xt'(j)
tfsztf
tcs~ tc
write(5, 81)

81 format(lx,'deltas')
call deltas(x,dx ,tt's,tcs,lflag~ii,iii)
writeC5,81)

wr ite(5 82)

82call assign(x,x , fs,lflag)
write(5, 82)
write(5,83)

83 format(lx,'integ')
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call integ(1Q,x,tfs~tcstiprint)
write(5,83)
write(5,8'4)

84 format(lx,'ndmiss')
call ndmiss(xtxi,rp,rnormp)
write(5,84)
Write(5,9) rp,rnormp
9 ormat(lxO'rp and rnormp',/,5(lx,flO.'4))

do 1Q jzl,10
19 x(j):xf(j)

tfs~tf
tosatc
call deltas(x,dx,tts,tes,ltlag,ii,iii)
call assign(x,xi,tts,ltlag)
call integ(10,x,tfs,tcs,iprint)

* ~call ndmiss(x ,xi,rm,rnormm)
write(5,11) rrn,rnormm

11 format(lx,'rm and rnormm',/,5(lx,fl@,4))
do 12 j=194

write(5,13) dx
13 format(lx, 'dx',/,4(lx,f14.7),/)

call mtxinv(drdz,drdzi,d,4)
do 14 i:1,4
dz(i)=@.@
do 14 j=104

14 dz(i):dz(i)fdrdzi~i,j)*r(j)
write(5,15) dz

15 format(lx,'dz' ,/,4Clx,flO.4),/`)
call search(xf,xi ,tf,tc,dz,r,rnorm,lflag, iprint)
write(5, 17) xf,tf,tc,r,rnorm
if(rnorm~gt.1.eoeQ) go to 6

16 write(5,17) xf,tf,tc,r,rnorm
17 format~lx, 'xf,tf,tc,r,rnorm' ,/,2(5(lx,f13.7),/),
&2(Ix,f1Q,6),/,5(lx,f13.7))
if(choiceoeq,@) go to 20
do 18 iz1,10

18 x(i):xf~i)
call integ(1f,x,tf,tc,Q)
call ndmiss x ,xi ,r ,rnorm)
write(5,19) x,tf,tc,r,rnorm

19 &format(lx fx tf tcpr rnorm'l,/,2(5Clx,f13.7),/),

2Q stop
* end
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subroutine assign(x xi,tf,lflag)
dimension x(1O),xi(iO)
real nmax
data beta,g,nmax/0*1.O003281 1628,32.174,7.22/
x(4):558,67441*sqrt(exp(ebeta'x( 1)))
if(lt'lagoeq,2) go to 1f
Ei~xi(1 )+xi(4)'02/2.0/g
E~x(1 ).x(4)*"2/2.0/g

x2min~oGtt4*x(4 )/200. 123
x2max=Gtf'x(4)/264,471
if(x(2),lt~x2min) x(2):x2min
if(x(2).gt.x2inax) x(2)=x2max
X(3):uIsqrt((x(4)/g/nmax)**2*(Gtf'gx(2)*g/x(4))**2gx(2)**2)
x(5)=$,@

x(8)=ex*)/
if(lflag.eq.2) go to 20

x(8)=x(8)/tf
20 return

end
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subroutine integ(njx,tf,tc,iprint)
dimension x(1Q)
real k,nmax
common apbeta,elmax,cdo,g,k,nmaxvtmaxpwpx14
common olnmax,hfifi,jflag,qa,rosig
jflag=@
dt~fQ.25
tcs~tc
call rkc78(n,x ,tf,tcs,dt,tc ,iprint)
x(5)=x(5)ox(8)*beta~x(4)/2.4

tcx~tcso1.Oe*Q6
dt=§@*25
call rk78(n,x,tcx ,G.Q,dt,tcs,iprint)
tc~tcs
return
end
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subroutine rk78(n x ti t2 dtvtc Ii print)
.V~ (:~ imenionalfh(131 3b(1,1' 13 XC 19) xdum(11)

dimension N 10) Q~fiqi Qt5Q f6(11)tf7(1O),
&f8(1Q) ,f9(1o) 414(10l) fll(10) ,r12(19) f13(103
real ic,nmax,mu2,mu3

LI common a,beta,elmax,cdo,g,k,nmax,tmax,w,x14
common clnmax,hfifi,.jflag,qa,rosig'
data (alph(i),i=1,13)/

&0.166666666666666e+il@,0Q.416666666666666e+0@,0.5 @,
&g83 333333 33 33333e+@0 0. 16666666666666.6e4-Q 0. 66666666666666 6e+Q0,

&l.333333333333333e+99,1.1 +00
&110 e...0/

* data ((b(itj),i=1,13),j=1,3)/

&Q,0.7407407'4@740740e@Q1 ,0.277777777777777eOQ1,
&0:416666666666666e*01,0.,416666666666666e+Q@,0.5 etol,
&e.231481 481'481481e+00,0.103333333333333e+00 ,2.0 @Q

* &g.842592592592592e+00,0.581219512195121e+@0,0.146341463414634e001,
&g.433414634146341e+@0,Q, to.p
&Q.833333333333333e001,i.IfF
&Q. p, .to

&Q. v0

&Q go ,0.125 e+99,
&0:15625 e+41,0.Pat

&Q. pQ
data C(b(iJ) ,i:1,13),3:14,6)/

&G.,015625 e+11,1.25 +,
&0.11574Q74074Q74Qe+01,Q. 9#.883333333333333e+01,
&Q.212962962962963e90,0,.207926829268293e+Q1 0.
&#o207926829268293e+01 ,0. to.

&a P. t,.
&Q,2e+0*,O.2L4074@7407140741e+01 ,0.271111111111111e+00,

C ~&G.1564J44444444444e+02,*.722962962962963e+01 ,Q.438634146341463e~01,
&G. ,0.4386341'46341'463e+11,4.

&Q .0.231481481481481e+01,
&g.222222222222222e+00',1.118888888888888e+62,0.575925925925926e+01,
&e.367073170731707e+Q1,g.14634146341463'4e+0Oi.352439024390244e.01/
data ((b(i,j),i:1v13),j:7,9)/

&Q, ,g.144444444L44L4444e*Ql:0.744444444444444e+g0,
* ~&N.316666666666666e+Qf0,.5202L43902L139024e,00,O.146341463414634e001,

&0,534878048780488e+20,0.,0

&Q, go. pg
MW. e401 ,g.283333333333333e+O1 :0.548780487804878e+00,
&g.731707317073171e101,0.621951219512195e+fQ0, p

&Q. ,O. ,.833333333333333ee01,
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&0. 274390243902'439e+0@ 0. 731717317073170e@01, 0.2012195121 95122e+00/
~ ~s' ~ data ((b~itj),i=1,13)tj=1O,12)/

S&0. Q,043992439@243912e+99,0*14634146341'4634e+gf,
&i.292682926829268e+0Q,Q. P, P

&Qo. ,o.P
&I, to.tot

&Q. Q* P
Pa. Pa.

P0 ,Q. Pa. P
data (ch(i),i=1,13)/

&IS ,,. Q.323809523809524e+0Q,
.0257142857142857 e+00 ,0 *257142857142857e+0 , 0. 321428571422857 e@01,

&i.321428571L428571eO01 ,o. 0G.488095238095238eogl,
&G.'488195238095238e*01 /
data erps,tol,tolt/1.QeOG6,1.@eg03,1.Qe*04/
t~tl

10 do 20 i:1,n
20 xdum(i)=x(i)

if(iprint.eq.Q) call printr(x,t,tc)
call deriv(x,t,tc,fl)
if'(iprint~eq*0) call hamilt~t,x~fl,h)
if(t~eq~t2,or~dt~eq*G.Q) go to 250

30 continue
b21:b(2,1 )*dt
do 42 i:1,n

42 x(i):b21~f1(i)..xdum(i)
call deriv(x,t,tc,f2)
b31=b(3,1)*dt
b32=b(3,2)*dt
do 43i1=1n

43 x(i)=b31*f1(i),b32*f2(i)+xdum(i)
call deriv(x,t,tc,f3)
b41=bC4, 1 )dt

v b43=bC4,3)*dt
do 44 i-i n

44 x~i):b4l* 1(i)+b43'f3 (i)+xdum(i)
call deriv(x,t,tc,f4)

A b51:b(5, 1 )dt
b53=bC5,3)*dt

) do 45 i= 1 ,n
45 x(i):b51'fl (i)+b53*(f3(i)ef4(i))+xdum(i)

call deriv(x,t~tc,f5)
b6l:b(6, 1 )dt

4b6'4=b (6,4) *d t
b65=b(6,5)*dt
do 46 i:1,n

46 x(i):b61*fl(i)+b64*f4(i)+b65*f5Ci),xdum(i)
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call deriv(x,t,tc,f6)
b71:b(7',l)Pdt
b714=b(7,4)*dt
b75:b(7,5)*dt
b76=b(7,6)*dt
do 147 i:1,n

47x( i):b71*fi(i)+b74*f14(i)+b75*f5(j)+b76*f6(i)+xdum(i)
call deriv(x,t,tc,f7)
b81:bC8, 1)*dt
b85=b(8,5)*dt
b86=b(8,6)*dt
b87:b(8,7)*dt
do 48 i:1,n

48 x(i)=b87*f7(i)+b8l*fl1 i)+b86*f6(i)+b85*f5(i)+xdum(i)
V call deriv(x,t,te,f8)

b91:b(9, 1)*dt
b94=b(9,4)*dt
b95=b(9,5)*dt
b96=b(9,6)*dt
b97=b(9,7)*dt
b98=b(9t8)*dt
do 149 i:1,n

149 x(i)=b97*f7(i)+b91*f1 (i)+b98*f8(i)+b94*f4(i)+b96*f6(i)+
&b95*f5(i)+xdum(i)
call deriv~x,t,tc,f9)
blQl=b(10 1 )*dt

* blV4=b(10,4)*dt
bl@5=b(10,5)*dt
b106=b(1Q,6)*dt
b107:b(11,7)*dt
,0Q8=b(1G,8)*dt

do 50 t~l,n
50 x~i)=gb32*f9(i)+bIQ4*r14(i).blQ7*fT7(j)+blgl.j.l(i)+b108*f8(i)+

&b106*f6(i )+b105'±'5( i)+xdun( i)
call deriv(x,t,tc,f1Q)

blll:b(11 ,1)*dt
b114:b(11,5)*dt

b116=b(I1p 6)*dt
b117:b(11,7)*dt

b119:b(11 ,9)*dt
blllOzb(11, 1)*dt
do 51 i=1,n
f14(i)=b114C14(i)+b115*f5(i)

51 x~i):bl19*f9(i).blllQ'flQ(i)+b117*f7(i)+bl18*f8(i)+

call deriv(x,t,tc,f11)
bl21=b(12, 1 )dt
b126:b(12,6)*dt
b128:b(12,8)*dt
do 52 i:1,fl

52 x(i)=b12l1(C (i)*f7(i) )+b128*(f8(i).f9(i) )+
&bl260 (f6(i)of16(i)).xdum(i)
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* call deriv(x,t,te,f12)
b131mb(13,1)*dt
b136=b(13,6)'dt
blj7=b(13,T)*dt
b138:b(13,8)*dt
b139=b(13,9)*dt
b131f:b(13t'If)*dt
do 53 i:1,n

53 x(i)=b139*f9(i)+b1310'flO(i)+bl31'fl (i)+bl37*f7Ci)+
&bl38*f8(i)+f12(i)*dt+f4(i)+b136*f6(i)+Xdum(±)
call derIv(x,t,to,f13)
c6=ohC6)*dt.
c7=ch(7)*dt
c9=ch(9)*dt
c12=ch( 12) *dt
do 100 i=l,n

&c12*(f12(i)+fl3(i)))

dtlzdt
if(t.lt.tc) go to 110
call contrl(x,t,tc,mu2,rnu3,phi,cl ,pi)
if(pi~ge,1.0.or.pi.l~e.o0.5) jflag:1
if(jflagoeq.1.andepi~ge.1.oforepieleoe0.5) dt~dtl*4*98
if(dt~eq.(4.98*dtl)) go to 3Q

110 go to 20Q
er=0.0
do 150 J:1,n
if(abs(x(j)).lt.erps) go to 150
es~abs( (fi (j)+f11 (j)of12(j)e±'13(J,))/x(j))
if( es.gt. er )erzes

150 continue
er~er~abs(c12)+1o s,2Qe2
dtztolt/er
dt~dt1~dt*0. 125
ir(erogtotol) go to 30
if(abs(dt)*gte0.25) dt=00*25

200 t~t+dtl
if(abs(dt)ogt~abs(t2*t)) dt~t2gt
go to 10

250 return
end
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* - subroutine printr(x,t,tc)
dimension WO1)
call contrl~x t~totemau2,mu3,phi ,cl,pi)
fpa~x (6 )*57 .29577 951
psi~x(7)*57.29577951
bank=Phi*57o29577951

10 format(lxof7.4,/,2(5(lxtel4.7) ,/),3(lx,fl'4.7),2(lx,e14.7))
return
end
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subroutine hamilt(t xfi,h)
dimension x(1O),t'(1)
h~x(5)*tf(1) ()*f(L4)+X(2)*f(6)+X(3)*f(7)
write(5,1) x(5) ,f(1),x(8),t(4)px(2) ,f(6),x(3) ,f(7),h

I format(lx, 'hamiltonian' ,3x,4(lxpe14.7),/,5(lx,el'l.7))
Emx( 1)+x(4)1 *2/2.Q/32,174
write(5,2) E

2 format(lxp,'peoific energy 1,e04.7)
return
end
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subroutine deriv(x,t,tc,t)
~ dimension x(1@),f(1t)

real k,l,lh,mu2,mu3,nmax
common a,beta,clmax,cdo,g,k,nmax ,tmax ,W,x14

common clnmax,hfifi,jflag,qa,rosig
call contrl(x,t,tc ,mu2,mu3,phi,cl,pi)
1=qa~cl
lh~l~beta
d~qa*(cdo+k*cl**2)
dh~d'beta

A coag~cos(x(6))
sing~sin(x(6))
coss=COS(x(7))
sins~sin(x(7))
f(1 ):x(4)*sing
f(7):g/x(4)/cosg*l/w*sin(phi)
f(2)=cosg*(g*(x(8)+mu3*(1.itbeta~x(4)**2/2.O/g))gx(5)*x(4))

&esing*x(2)*g/x(4)ox(3)*f(7)*tan(x(6))

f(4)=g*( Ctmax*pi.d)/wesing)
f(5)=g/w*(dh*(x(8)+mu3)+lh*(hfifi/x(4)tmu2))
f(6)=g/x(4)*(l/w~cos(phi)ocosg)

&osing*(x(5)+rnu3*beta*x(1 4))

f(9)=x(4)*cosg*coss
fk(1O)=xC4)*cosg~sins
return
end
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subroutine contrl(x,t,tc,mu2,MU3,phitcl,pi)
dimension x(0f)
real k,l,nmax :mu2,rnMu3
common a,beta clmax,cdo,g,knfmaxptmaxvw,x14
common clnmaxthfifi Jflag ,qa rosig )
hfifi~sqrt(x(2)**2+X( 3)/cos (x(6)))*2
rosi&:Q.0@23769*exip(beta~x(1))
qaza.5*rosi g*x(4)0 *2*a
phi~atan2 (I(x(3 )/cos(x(6))),Ix(2))
olnmax=2,Qgw*nmax/( rosig'a'x(4 )'2)

* if(x(8)*lt*0.0) cl=*hfifi/(2*0k~x(4)*x(8))
if(x(8)*ge.#.d) cl~clmax
if(cl~gtoclmax) 0l=clmax
if(clgt~clnmax) clzclninax

* if(cl.lt.40.) Cl:0.Q
d~qa C cdo+kbol**2)

A mu3=0Qo
if(teltotc) go to 1Q
pi:(d+w* 5 jfl(x(6))*(1.lBbeta~x(4)**2/2.G/g))/tmax
mu3=fx(8)
go to 31
if(cl,eq~clnmaxoand~t~lt~tcoafld.xi4.gt.x(4 ))

&mu2=2.Q*k~x(8)*clnmax+hfit'i/x( 4 )
10 if(x(8).eq.0.0) go to 21

go to 31

if(xi4 ltox(4)) fl@=2.0*g*hfifi*nmax/x(4)**2#
&(1.1/x(4)+x(5)*sin(x(6)))
if(f'10.lt.Q.0) pi~gG.5

30 return
end
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'a subroutine ndmiss(x,xi,r,rnorm)
dimension x(1O),Ixi(1O),r(4)

r(2):(x(6)oxi(6))#57,29577951*190.
r(3)=(X(7)gxi(7))*57.29577951*1@.Q

* ~r(~4)=(x(4)#xi(4))
rnorm=@.f
do If iz1,4

10 rnoirm~rnorm+r(i)*r(i)
rnorm~sqrt( rnorm)
return
end
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~ S.subroutine deltas(x dx tfs,tcs,lflag,ii,iii)
dimension x(16),dx (4)
dx(1 )zx(1 )*1.QeSQ5
dx (2 )z(2) *1. e#40
dx(3):tfs*l*Qe*03
if(lflagoeq*2) dx(3)=x(3)1l.ieeoL
dx(4)ztcs*1.Qe#93
if(ii.eq.1 .or.ii.eq.2) x(ii):x(ii)+iii*dx(ii.)
if(ii~eq.3.and.Jlflag~ne*2) tfs~tfs+iii*dx(3)
if(ii~eq*3oand~lflag~eq.2) x(3):x(3)+iii'dx(3)
if(iioeq*4) tcs~tcs~iii'dx(4)
return
end

'A
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subroutine mtxinv(a,b,c,fl)
dimension a(n,n),b(n,n),c(n,n)
do 5 ic1,n
do 5 J=1 In

5 c(i,j):a(i,j)
do 10 i:1,n
do 10 J:1,n

10 b(ij):0.0
do 15 i:1,n

15 b(i,i)=1.0

do 35 i:1,n
cstorl~c(i,i)
do 20 j~1,n
c(i ,j)zc(i ,j)/cstorl

20 b(i,j)zb(i,j)/cstorl
j=Q

25j=j+l
25if(j~eq~i~andei.eq.n) go to 4Q

cstor2:c(J,i)
do 31 k~1,n
c(j ,k)=c(a,k)*cstor2*c(i ,k)

30 b(.j,k)=b(j,k)tcstor2*b(i,k)
if(joneon) go to 25

35 continue
40 return

(p end
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subroutine search(xfyxiptftotc dzvrornorm,lflag,iprint)
dimension xf(10),xi(10),x(10),r(4),rp(4),rm(4) ,dz(4)
iter:0
choice=@
rnormm:9 999999999.
stepl=l.Q
step2=0,618033989
iteratz0
m±'lag:0

1 iter~iter+1
gsr~stepl*step2**( iteroliiterat)
write(5,*) iter,gsr
do 2 j=1,2

2 x(J)=xf(j)+gsr*dz(j)
if(lflag~eq,2) x(3):xf(3)+gsr'dzC3)
do 3 J=5,10

3 x(J):x±'Cj)
tfs~tf
if(lflag~eqo1.or.lflag.eq.3) tfs~tf+gsr~dz(3)
tes~tc+gsr'dz(4)
ir(tcsogt~tfs) tcs~tfs
if(teselt,661) tcS=0.0
call assign(x,xi~tf,lflag)
call integ(10,x,tfs,tcs,1)
call ndmiss(x,xi,rp,rnormp)
if(mflag.eq.1) go to 4

A ~if(r~normp~lt,(1#25*rnorm)) rnflag=1
if'(mflag.eq.0) go to 4
step 1:gsr
stepŽ.zQ.618433989
iterat~iter~l

4I writeC5,5) tfs,tes,rp,rnormp
5 forrnat(lx, 'tfs,tes,rp,rnormp' ,/,7(lx,f10.4))

If(rncrmp.gt.rnormm) go to 7
do 6 1:1,4

6 rm(i)=rp(i)
if~rnormp.,lt.rnorm) rnormm~rnormp

7 tcsave~tcs
if(iterolt*20) go to 1
to: tosave

if(tcý,lt.0.Q) tc:0.00

call assign(xf,xi,tf,lflag)
do 1Y0 i:1,4

170 r(i)=rm(i)
rnoriTs~rnormm
return
end
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